• English
  • Français
slideshow 1 slideshow 2 slideshow 3 slideshow 3 slideshow 3 slideshow 6 slideshow 7 slideshow 8 slideshow 9 slideshow 10 slideshow 11 slideshow 12 slideshow 13 slideshow 14 slideshow 15 slideshow 16

You are here

Export 34 results:
Filters: Author is Chehata, N.  [Clear All Filters]
2018
[Anonymous].  2018.  Parcel-Based Active Learning for Large Extent Cultivated Area Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. PP:1-10.
[Anonymous].  2018.  Parcel-based active learning for large extent cultivated area mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11
[Anonymous].  2018.  Parcel-based active learning for large extent cultivated area mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11
[Anonymous].  2018.  Sentinel-2 for environmental ressources in Tunisia first results with L2A data. Theia Workshop for Sentinel-2 L2A MAJA products, 1-314 June 2018 Toulouse (France).
2017
[Anonymous].  2017.  Méthodes de traitement de données lidar. Observation des surfaces continentales par télédétection optique. :251-294.
2016
[Anonymous].  2016.  Agricultural Land cover mapping by active learning from multispectral spot-7 satellite image. International Conference & Exhibition Advanced Geospatial Science & Technology (TeanGeo 2016).
[Anonymous].  2016.  Airborne LiDAR Data Processing. Optical Remote Sensing of Land Surface. :249-297.
[Anonymous].  2016.  Airborne LiDAR Data Processing. Optical Remote Sensing of Land Surface. :249-297.
[Anonymous].  2016.  Comparison of Pleiades and LiDAR Digital Elevation Models for terraces detection in farmlands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 9:1567-1576.
2015
[Anonymous].  2015.  Can we automatically choose best uncertainty heuristics for large margin active learning ? Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International. :4360-4363.
[Anonymous].  2015.  Can we automatically choose best uncertainty heuristics for large margin active learning ? Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International. :4360-4363.
[Anonymous].  2015.  Characterizing land and water use across different spatial scales within rural areas over the Cap Bon region (Tunisia). Conférence internationale MISTRALS 2015.
[Anonymous].  2015.  Characterizing land and water use across different spatial scales within rural areas over the Cap Bon region (Tunisia). Conférence internationale MISTRALS 2015.
[Anonymous].  2015.  Délimitation des parcelles agricoles par classification d'images Pléiades. Revue Française de Photogrammétrie et de Télédétection. 209
[Anonymous].  2015.  Farmland terrace slope detection from Pleiades digital elevation models. EGU General Assembly Conference Abstracts. 17:10021.
[Anonymous].  2015.  Farmland terrace slope detection from Pleiades digital elevation models. EGU General Assembly Conference Abstracts. 17:10021.
[Anonymous].  2015.  A random forest class memberships based wrapper band selection criterion: Application to hyperspectral. Geoscience and Remote Sensing Symposium (IGARSS).
2014
[Anonymous].  2014.  Adaptation des mosaïques paysagères dans les agrosystèmes pluviaux Méditerranéens pour une gestion durable de la production agricole, des ressources en eau et en sol - projet ALMIRA. Journées scientifiques INAT 2014 - Changements climatiques et mesures d?adaptation.
[Anonymous].  2014.  Adapting Landscape Mosaics of medIteranean Rainfed Agrosystems for a sustainable management of crop production, water and soil resources: the ALMIRA project.. Geophysical Research Abstracts. 16
[Anonymous].  2014.  Agricultural field delimiitation using active learning and random forests margin. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014. :1717-1720.
[Anonymous].  2014.  Classification of forest structure using very high resolution pleiades image texture. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014. :2324-2327.
[Anonymous].  2014.  Combining top-down and bottom-up approaches for building detection in a single very high resolution satellite image. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014. :4820-4823.
[Anonymous].  2014.  Contribution of band selection and fusion for hyperspectral classification. IEEE WHISPERS.
[Anonymous].  2014.  Delineation of anthropic landscape features from VHR satellite imagery: application to agricultural parcel delimitation. Pleiades Days.
[Anonymous].  2014.  Identify iportant spectrum bands for classification using importances of wrapper selection applied to hyperspectral data. IEEE IWCIM (International Workshop on Computational Intelligence for Multimedia Understanding).
[Anonymous].  2014.  Large-scale road network extraction in forested mountainous areas using airborne laser scanning data. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014. :4315-4318.
[Anonymous].  2014.  Object-based change detection in wind-storm damaged forest using high resolution multispectral images. International Journal of Remote Sensing. 35:4758-4777.
[Anonymous].  2014.  Optimisation de configuration spectrale pour la classification de données hyperspectrales. 3ème colloque scientifique SFPT-GH (Société Française de Phogrammétrie et Télédetection, Groupe Hyperspectral).
[Anonymous].  2014.  Terrace walls detection from a Pleiades Digital Elevation Model. Pleiades Days 2014, Toulouse, 1-3 april.
[Anonymous].  2014.  Terrace walls detection from a Pleiades Digital Elevation Model. Pleiades Days 2014, Toulouse, 1-3 april.
[Anonymous].  2014.  TRIPL : Télédétection hautement Résolue d'Infrastructures Paysagères Linéaires.
[Anonymous].  2014.  TRIPL : Télédétection hautement Résolue d'Infrastructures Paysagères Linéaires.
[Anonymous].  2014.  Uncertainty Heuristics of Large Margin Active Learning for Hyperspectral Image Classification. IEEE IPAS'14 : INTERNATIONAL IMAGE PROCESSING APPLICATIONS AND SYSTEMS CONFERENCE 2014. :1-6.
[Anonymous].  2014.  Use intermediate results of wrapper band selection methods: A first step toward the optimization of spectral configuration for land cover classifications. IEEE WHISPERS.